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Topological equivalence
• inequivalent 

objects cannot 
be continuously 
transformed into 
each other

Topology promises to solve the 
problem of errors that inhibit 

the experimental realisation of 
quantum computers… 

Topological quantum computers: Why? 

…and it is a lot of fun :-) 
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Topology promises to solve the 
problem of errors that inhibit 

the experimental realisation of 
quantum computers… 

Topological quantum computers: Why? 

…and it is a lot of fun :-) 

Topology promises to solve the 
problem of errors that inhibit 

the experimental realisation of 
quantum computers… 

Topological quantum computers: Why? 

…and it is a lot of fun :-) 
• these 2D surfaces 

are classified by an 
integer, their genus 
(number of handles)

genus 0

genus 1

genus 2

genus 3

topology (genus) is
a global property

mug

coffee cup

“loving cup”

???

(or soup?)



• geometric properties (such as curvature) are 
local properties

Gauss-Bonnet (for a closed surface)

• trivially true for a sphere, but non-trivially true 
for any compact 2D manifold

• but integrals over local geometric properties may 
characterize global topology!

Z
d2r(Gaussian curvature) = 4⇡(1� genus)

= 2⇡(Euler characteristic)

4⇡r2 ⇥ 1

r2
= 4⇡(1� 0)

1

R1R2



• In quantum mechanics, “geometry” relates to 
energy,  “local deformations” become 
adiabatic changes of the Hamiltonian, and 
“smoothness” (short-distance regularization) 
of the manifold derives from an energy gap

• the topology of quantum states is conserved 
so long as energy gaps do not close.



• A more abstract generalization of the Gauss-
Bonnet formula due to Chern found its way 
into quantum condensed-matter physics in 
the 1980’s

• Quantum states are ambiguous up to a phase:

• Physical properties are defined by expectation 
values              that are left unchanged byh |Ô| i

| i 7! ei'| i

• As noticed by Berry, this has profound consequences for a family 
of quantum states parametrized by a continuous d-dimensional 
coordinate x in a parameter space.



•            can be expanded in a fixed 
orthonormal basis
| (x)i

| (x)i =
X

i

ui(x)|ii hi|ji = �ij

|@µ (x)i ⌘
X

i

@ui(x)

@x

µ
|ii

• the simple derivative                does not 
transform “nicely” under | i 7! ei'| i

|@µ (x)i

• we need a “gauge-covariant”derivative               

|Dµ (x)i = |@µ (x)i � | (x)ih (x)|@µ (x)i

projects out parts of
not orthogonal to

|@µ (x)i
| (x)i

h (x)|Dµ (x)i = 0
parallel transport



• The gauge-covariant derivative can also be written

|Dµ (x)i = |@µ (x)i � iAµ(x)| (x)i

an analog of the
electromagnetic vector 
potential in the parameter 
space x

• Berry’s phase factor for a closed path Γ in parameter 
space is the analog of a Bohm-Aharonov phase

e

i��
= exp i

I

�
dx

µAµ(x)

Lots of analogies 
with electromagnetic  

gauge fields in 
Euclidean space!



• The key gauge-invariant quantity is

hDµ (x)|D⌫ (x)i = 1
2 (Gµ⌫(x) + iFµ⌫(x))

Real symmetric positive
Fubini-study metric

Real antisymmetric
Berry curvature

integral over a closed
orientable 2-manifold

Z

M2

dx

µ ^ dx

⌫Fµ⌫(x) = 2⇡C1

“Chern number”
first Chern class (an 
integer) replaces Euler’s
characteristic

(defines “quantum geometry”)

Chern’s generalization of  Gauss-Bonnet

Fµ⌫ = @µA⌫ � @⌫Aµ



• The simplest example of this is the quantum 
geometry of the coherent states of a 
quantum spin

“most classical state of a spin”

⌦̂ · ⌦̂ = 1⌦̂ · S|⌦̂i = S|⌦̂i
S · S = S(S + 1)

spin has maximum polarization 
along direction      but still has
zero-point motion around it

⌦̂

|h ˆ⌦1| ˆ⌦2i| = (cos

1
2✓12)

2S

coherent states are non-orthogonal and overcomplete!

⌦̂1

⌦̂2✓12

|⌦̂⇥ S|2|⌦̂i = S|⌦̂i



• This “explains” a curious feature of the 
Heisenberg exchange Hamiltonian for spins (and 
also “explains” very topical things such as 
Laughlin states in fractional Chern insulators...) I 
hope to cover this in my talk tomorrow

H = J
X

hi,ji

Si · Sj Coherent state of ordered
antiferromagnet

⌦̂ · Si|⌦̂Néeli = (�1)iS|⌦̂Néeli

• The Hamiltonian has NO KINETIC ENERGY!

• For large S (or large second-neighbor ferromagnetic exchange) the 
Néel state has a very low energy, and quantum dynamics arises only 
because the coherent states are NON-ORTHOGONAL with a non-
trivial Fubini-Study metric (quantum geometry)



• Before the 1980’s, condensed matter 
theorists rarely used Lagrangians or actions

• The spin S was assumed to act like a 
continuously variable real parameter in the 
Heisenberg Hamiltonian, merely controlling 
the amount of local zero-point fluctuation 
about the classically-ordered state

• But, in one-spatial dimension,  quantum 
fluctuations destroy long-range order, so 
GLOBAL (topological) structure becomes 
important.



• Dirac’s 1931 quantization of the magnetic 
monopole also explains the topological 
quantization of spin so 2S is an integer!

eS/~ =

Z
D⌦̂(t)eiS![⌦̂(t)]ei~

�1 H
dtHS(⌦̂)

functional
integral over 
histories ⌦̂(t)

topologically quantized:
2S = integer to make

“Dirac string” invisible

here S can vary
continuously

solid angle swept out by spin
history (only defined modulo 4π)

linear in
time derivative,  

absent in 
Hamiltonian!

Dirac monopole
vector potential

![⌦̂(t)] =

Z
dtAi(⌦̂(t))@t⌦̂

i(t)

!
⌦̂(t)

-



• The coherent state of the spin “lives” on a 2-
manifold which is the unit sphere.

• Its Chern  number is 2S, which must be 
topologically-quantized to be an integer*

• There is a further “Z2” classification by 
whether 2S is even or odd (integer or half-
odd-integer spins).

* the topological nature of this result is hidden in the 
standard algebraic derivation!



1D Quantum Heisenberg antiferromagnets
(with time-reversal and inversion symmetry)

• Zero-point quantum fluctuations in 1D 
destroy long-range order in the ground state

A B BBB BAA A A A

classical picture of (locally-) ordered state

• effective field-theory = “non-linear sigma model”
FDMH 1983

~Sn = (1)nS⌦̂(xn)

unit-vector field ⌦̂(x, t)



• effective action

S =
1

2g

Z
dxdt

⇣
c

�1|@
t

⌦̂|2 � c|@
x

⌦̂|2
⌘

+
✓
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Z
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t

⌦̂⇥ @
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⌘

Topological “theta”term

• can be derived from Berry phases of individual spins

• Linear in time derivatives, so absent from 
Hamiltonian, does not affect classical-limit equation 
of motion.

surface area on 
unit sphere swept 
out by space-time 

path of field
⌦̂(x, t)

ei✓ = e�i✓

if inversion or time-
reversal symmetry is 
present: ✓ = 2⇡S

spin-wave velocity



• quantum ground state:

half-integer spin: ei✓ = �1
either gapless critical state (small g)
or gapped state with broken inversion symmetry

integer spin:
 gapped (incompressible) state,unbroken symmetry

ei✓ = +1

free spin-(S/2) states at free ends!

("# � #") ("# � #")("# � #") ("# � #")("# � #") ("# � #")
� �0

valence bond picture (AKLT) spin -1
“symmetry-protected” topological order (Wen)



• topological order = long-range entanglement

("# � #") ("# � #")("# � #") ("# � #")("# � #") ("# � #") ("# � #")

Left region Right region

| i =
X

�

e�⇠�/2| L
� i ⌦ | R

� i

Bipartite Schmidt-decomposition of 
ground state reveals entanglement

⇠�

“entanglement
gap”

doublet
(S=1/2)

• a gapless “topological entanglement spectrum” 
separated from other Schmidt eigenvalues by an 
“entanglement gap” is characteristic of long-range 
topological order (Li + FDMH, PRL 2008)



Gunnar Möller Cargèse, Juin 2013

Strongly correlated states from the Hofstadter spectrum

• Hofstadter spectrum with Chern 
indices [Avron et al.]

E

n�

n�

n

• Interactions stabilize fractional 
quantum Hall liquids in these bands!

• CF Theory: GM & N. R. Cooper, PRL (2009)

• Near rational flux density: LL’s with 
additional pseudospin index
R. Palmer & D. Jaksch PRL 2006
L. Hormozi et al, PRL 2012

1

2

-1

-2

• the Hofstadter spectrum provides bands of all Chern numbers

• This was a model for a 
“quantum Hall effect without 
Landau levels” (FDMH 1988), 
now variously known as the 
“quantum anomalous Hall 
effect” or “Chern insulator”.

• Previously,  Thouless, Kohmoto, 
Nightingale and den Nijs 
(TKNN) had analysed the QHE 
in the Hofstadter model, and 
found the invariant 
subsequently identified by 
Simon as the Chern number.

The 2D Chern insulator as the first “topological insulator”

colored by Avron et al.



• In the Hofstadter model, a magnetic flux of p/q 
London (h/e) quanta passes through each unit cell of a 
periodic lattice,  and reduces the Brillouin zone to a 
reciprocal-space area that  is 1/q2 smaller, and each of 
these “magnetic bands” has an internal q-fold 
degeneracy.   (p and q are relative primes).   For q=1, 
the Hofstadter model has a standard non-
topological bandstructure

• The 1988 modified graphene model I 
proposed seems to be the first that explicitly 
considered a system with q = 1 (and p = 0) 
where a  Bloch band-structure that was 
“normal” (apart from broken time-reversal 
symmetry) produced a quantum Hall effect



• instead of an external magnetic field, the “toy model” 
placed a magnetic dipole at the center of each 
hexagon, which both spin-polarizes the electrons, 
and gives the same chiral phase to any triangular 
second-neighbor hopping path around a dipole.

• six-fold rotation symmetry is unbroken,

• no net flux through the unit cell

Ferromagnetically-
ordered
magnetic dipoles
pointing out of the plane



2D Graphene:
• Dirac points (2 valleys)
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(looks like six points, but
only two “Dirac points” are distinct)



(Brillouin zone of an 
isolated 2D band is a simple 
torus with genus 1)

Hilbert-Space picture of the geometry of 
the graphene valence and conduction band

Dirac 
point

conduction
band

 The two bands joined at the 
Dirac points form a  
Genus-3 manifold

valence
band

Dirac 
point

In k-space, Dirac points 
are singularities, in 
Hilbert space, they are 
smooth tubes or 
“wormholes” that join 
the two bands

There is  a “Z2”  Berry 
phase factor -1
for these adiabatic 
paths 



• The underlying graphene band-structure 
with bands touching at two conjugate “Dirac 
points” at the corners of the hexagonal 
Brillouin zone  requires vanishing Berry 
curvature              of the Bloch bands in the 
Brillouin zone (topologically a 2-torus). 

Fxy(k)

• spatial inversion symmetry implies

Fxy(k) = Fxy(�k)

• time-reversal symmetry implies

Fxy(k) = �Fxy(�k)

• Both symmetries are required for the Dirac 
band-touching points to survive



• there are two sites per unit cell, related by 
2D inversion (180o rotation) symmetry

A

A

A B

B

B

2

2

2
2

2

2

6

• breaking this symmetry opens a “boring” 
equal-sign mass gap at both Dirac points, and 
the system becomes a simple “Boron-nitride” 
semiconductor



• In contrast, breaking time-reversal gives an 
“interesting” mass term that has opposite 
sign at the two Dirac points

• This “topological” mass term anticommutes 
with all other possible mass terms (which 
commute with each other) and gives a 
quantum Hall effect.



• Breaking either Inversion 
or time-reversal allows a 
local Berry-curvature at 
each point in the Hilbert 
space.

• The Dirac points lose 
topological protection and 
split

Berry “flux” of close to π  
flows through these 
paths. It must emerge or 
enter near the former 
Dirac points



four possibilities

Broken inversion
symmetry, no net Berry 
flux flows between
bands

Broken time reversal 
symmetry, net Berry 
flux 2π flows between
bands.    bands have 
Chern numbers +1, −1



• If both perturbations are present, the Dirac 
points have different mass gaps



• gapless graphene “zig-
zag” edge modes

Broken
inversion

Broken
time-reversal

(Chern insulator)



• Because of its simplicity, this model has been very 
useful in a number of contexts:

• It provides a simple model of a Berry-phase-driven 
quantum anomalous Hall effect when the Fermi 
level is in the gap.

• When the Fermi level is in one of the bands, it 
provides a simple model for a 2D unquantized 
anomalous Hall effect, where in 2D the Hall 
conductance is the total Berry phase for moving a 
quasiparticle clockwise around each branch of the 
Fermi surface.   This result proved very useful for 
the more interesting generalization showing that 
the 3D anomalous Hall effect was a geometrical 
Fermi-surface Berry-curvature property (FDMH, 
Phys. Rev.Lett. 93, 206602 (2004)



• Photons are neutral bosons, not charged 
fermions, so they will not exhibit a QHE

• but photonic bands with non-vanishing Chern 
number can have protected edgemodes if they are 
in a bulk photonic gap! 

• My student Sri Raghu found a photonic 
bandstructure based on the graphene model that 
explicitly demonstrated this.

• Later, a (using a more robust bandstucture 
design), protected edge transport of microwaves 
was experimentally confirmed at MIT

Photonic “Chern insulator bands”



Analogs of quantum Hall edge states in photonic crystals 

• Predicted theoretically that using 
magnetooptic (time-reversal-breaking) 
materials, photonic analogs of electronic 
quantum Hall systems could be created 
where topologically-protected edge 
modes allow light to only travel along 
edges in one direction, with no 
possibility of backscattering at 
obstacles!

• Effect was experimentally confirmed 
recently at MIT  (Wang et al., Nature 
461, 775 (8 October 2009).

• Obvious potential for technological 
applications! (one-way loss-free 
waveguides)

Haldane and Raghu, Phys. Rev. Lett.100, 013904 (2008)

Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication.We thenperformed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods).Ournumerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquireChern numbers
of 1,22 and 1, respectively. This result follows from theC4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal withmetallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
containCESs (and the frequencies atwhich theyoccur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design

a

b
y x

z

4 cm

Antenna A

Antenna B

CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.

a

b

c

A

A

B

l

a

Ez
0Negative Positive

Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antennaB is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.

NATURE |Vol 461 |8 October 2009 LETTERS

773
 Macmillan Publishers Limited. All rights reserved©2009

microwaves go
around obstacle!

(from Wang et. al)



Kane and Mele 2005
• Two conjugate copies of the 1988 spinless 

graphene model, one for spin-up, other for 
spin-down

At edge,  spin-up moves
 one way, spin-down

the other way

If the 2D plane is a plane of mirror symmetry, spin-
orbit coupling preserves the two kinds of spin.   
Occupied spin-up band has chern number +1, 

occupied spin-down band has chern-number -1.

E

k k

B=0
Zeeman coupling 

opens gap



• This looks “trivial”, but Kane and Mele found that 
the gapless “helical” edge states were still 
there (!) when Rashba spin-orbit coupling that 
mixed spin-up and spin-down was added.

• They found a new “Z2” topological invariant of 2D 
bands with time-reversal symmetry that takes two 
values, +1 or -1. The invariant derives from 
Kramers degeneracy of fermions with time-
reversal symmetry.

• This launched the new “topological insulator” 
revolution when an experimental realization was 
demonstrated by Molenkamp in a much improved, 
physically-realizable model designed by  Andrei 
Bernevig, Taylor Hughes and Shoucheng Zhang



• The 3D effect, first formally discovered by Joel 
Moore (whose undergraduate Senior Thesis I 
supervised years ago) and Leon Balents, and 
independently by Rahul Roy.  

I’ll leave the “modern” TI story for my co-medallists to 
tell, but I’ll comment on the things that surprised me the 
most .....

This really become clear after Charlie Kane and his then 
student Liang Fu found the beautiful formula that allows 
“Topological or not” to be determined by inspection of 
inversion-symmetric bulk 3D band structures

and



• The beautiful reformulation of the 3D TI as 
3+1d “axion electrodynamics” by Xiao-Lin 
Qi, Taylor Hughes and Shoucheng Zhang:

this parallels the “theta term” of the
1+1d spin chain,based on the second Chern 
invariant as opposed to  the first because the 
spatial dimension increased by 2!



• Finally, recent work by a number of authors 
on “flat band” fractional Chern insulators, 
including my 1988 honeycomb model has 
shown that they support Laughlin-like states 
on a lattice,  making a start to the fractional 
topological insulator story!



The moral of this long story: suggests 
three distinct ingredients for success.

• Profound, correct, but perhaps opaque formal 
topological results  (Invariants, braid group, etc)

• Profound, simple and transparent “toy models” 
that can be explicitly treated (The honeycomb 
Chern Insulator, the Kitaev Majorana chain, etc)

• Understanding the real materials needed  for 
“realistic” (but more complex) experimentally-
achievable systems that can bring “toy model 
results” to life in the hands of experimentalist 
colleagues. 


