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Topologically-non-trivial phases in
condensed matter physics:
from ID spin chains, to
2D Chern insulators, to today
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® Jopology and quantum physics

® Spin Chains and Chern Insulators as
Symmetry Protected Topological states

® | essons for the future
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® geometric properties (such as curvature) are
local properties

® but integrals over local geometric properties may
characterize global topology!

Gauss-Bonnet (for a closed surface)

/ d*r(Gaussian curvature) = 47 (1 — genus)

/

= 27 (Euler characteristic)
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® trivially true for a sphere, but non-trivially true
for any compact 2D manifold



® |n quantum mechanics, ‘geometry” relates to
energy, “local deformations” become
adiabatic changes of the Hamiltonian, and
“smoothness” (short-distance regularization)
of the manifold derives from an energy gap

® the topology of quantum states is conserved
so long as energy gaps do not close.



® A more abstract generalization of the Gauss-
Bonnet formula due to Chern found its way

into quantum condensed-matter physics in
the 1980’

® Quantum states are ambiguous up to a phase:

® Physical properties are defined by expectation
values (qf\é|\y>that are left unchanged by

) — ')

® As noticed by Berry, this has profound consequences for a family

of quantum states parametrized by a continuous d-dimensional

coordinate x 1n a parameter space.



e |U(x))can be expanded in a fixed
orthonormal basis
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® we need a “‘gauge-covariant’derivative

<\IJ(a3)‘D’u\Ij(w)> — 0 projects out parts of |0,V (x))

parallel transport not orthogonal ©o | (1))



® The gauge-covariant derivative can also be written

D,¥(x)) =10,V (7)) — iAu(x)|¥(z))
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Lots of analogies an analog of the

with electromagnetic

gauge fields in eIectro.ma%gnetlc vector
Euclidean space! potential in the parameter
space

® Berry’s phase factor for a closed path /'in parameter
space is the analog of a Bohm-Aharonov phase

el = expi% dxt A, ()
T



® The key gauge-invariant quantity is

(DY ()| D, (x)) = % (Guv () +iF ()

Real symmetric positive Real anzisymmetric

Fubini-study metric Berry curvature
(defines “quantum geometry”) Fuw =0,A, —0,A,

Chern’s generalization of Gauss-Bonnet

/ dx N dx” F,(x) = 2mCy
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| “Chern number”
integral over a closed first Chern class (an

orientable 2-manifold integer) replaces Euler’s
characteristic




® The simplest example of this is the quantum
geometry of the coherent states of a
quantum spin

“most classical state of a spin”
Q- S|Q) = S|Q)
Q x S?192) = S|2)

spin has maximum polarization
along direction {2 but still has

zero-point motion around it {) m O
‘ 4 2

(1[60)] = (s 3o L

coherent states are non-orthogonal and overcomplete!

Q- O=1
S-S =5(5+1)




® This “explains” a curious feature of the
Heisenberg exchange Hamiltonian for spins (and
also “explains’ very topical things such as

Laughlin states in fractional Chern insulators...) |
hope to cover this in my talk tomorrow

H=J Z Si - S; Coherent state of ordered

(i,5) antiferromagnet
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® The Hamiltonian has NO KINETIC ENERGY!

® For large S (or large second-neighbor ferromagnetic exchange) the
Neéel state has a very low energy, and quantum dynamics arises only
because the coherent states are NON-ORTHOGONAL with a non-
trivial Fubini-Study metric (quantum geometry)



® Before the 1980’s, condensed matter
theorists rarely used Lagrangians or actions

® The spin S was assumed to act like a
continuously variable real parameter in the
Heisenberg Hamiltonian, merely controlling
the amount of local zero-point fluctuation
about the classically-ordered state

® But, in one-spatial dimension, quantum
fluctuations destroy long-range order, so

GLOBAL (topological) structure becomes
Important.



® Dirac’s 1931 quantization of the magnetic " Q(t)
monopole also explains the topological

quantization of spin so 2S is an integer! e

6S/h _ /Dﬂ(t)ez’%w[fl(t)]éihl $ dt H'S\(SAZ)

topologically quantized: here S can vary

functional 2S = integer to make continuously
integral over “Dirac string” invisible
histories ﬂ(t)
1000)] = / AU
solid angle swept out by spin . linear in
history (only defined modulo 47) Dirac monopole e derivative,
vector potential absent in

Hamiltonian!



® The coherent state of the spin “lives” on a 2-
manifold which is the unit sphere.

® |ts Chern number is 25, which must be
topologically-quantized to be an integer™

® There is a further “Z," classification by
whether 2S is even or odd (integer or half-
odd-integer spins).

* the topological nature of this result is hidden in the
standard algebraic derivation!



1D Quantum Heisenberg antiferromagnets
(with time-reversal and inversion symmetry)

classical picture of (locally-) ordered state
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® Zero-point quantum fluctuations in 1D
destroy long-range order in the ground state

o cffective field-theory =“non-linear sigma model”
FDMH 1983

—

S, = (1)"SQ(z,)

unit-vector field Q(w, t)



. . spin-wave velocit
® cffective action P 4

1 A .
S=— [ dzxdt (c_1|8tﬂ|2 — c\@xﬂ\z)
29
v R . .
+— [ dedt (Q 9,2 amn)
A SL.Jrface area on
r . . unit sphere swept
if inversion or time- out by space-time

reversal symmetry is path of field
o 7 o - Q ’t
present: ¢/ = e~ % 0 =21 S (z,1)

Topological “theta”term

® can be derived from Berry phases of individual spins

® Llinear in time derivatives, so absent from
Hamiltonian, does not affect classical-limit equation
of motion.



® quantum ground state:

half-integer spin: e — 1
either gapless critical state (small g)
or gapped state with broken inversion symmetry

Integer spin: etV — +1
gapped (incompressible) state,unbroken symmetry

free spin-(S/2) states at free ends!
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valence bond picture (AKLT) spin -1
“symmetry-protected”’ topological order (VWen)




® topological order = long-range entanglement
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Bipartite Schmidt-decomposition of ==
ground state reveals entanglement “entanglement A
gap”

a gapless “topological entanglement spectrum”
separated from other Schmidt eigenvalues by an

“entanglement gap” is characteristic of long-range doublet=
topological order (Li + FDMH, PRL 2008) (5=1/2)
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The 2D Chern insulator as the first “topological insulator”

® This was a model for a
“quantum Hall effect without
Landau levels” (FDMH 1988),
now variously known as the
“quantum anomalous Hall
effect” or “Chern insulator”.

® Previously, Thouless, Kohmoto,
Nightingale and den Nijs
(TKNN) had analysed the QHE
in the Hofstadter model,and £
found the invariant
subsequently identified by
Simon as the Chern number.

colored by Avron et al.



® |n the Hofstadter model, a magnetic flux of p/q
London (h/e) quanta passes through each unit cell of a
periodic lattice, and reduces the Brillouin zone to a
reciprocal-space area that is 1/q? smaller, and each of
these “magnetic bands” has an internal g-fold
degeneracy. (p and q are relative primes). For g=1,

the Hofstadter model has a standard non-
topological bandstructure

® The 1988 modified graphene model |
proposed seems to be the first that explicitly

considered a system with ¢ = 1 (and p = 0)
where a Bloch band-structure that was
“normal” (apart from broken time-reversal
symmetry) produced a quantum Hall effect



Ferromagnetically-
ordered

magnetic dipoles
pointing out of the plane

® instead of an external magnetic field, the “toy model”
placed a magnetic dipole at the center of each
hexagon, which both spin-polarizes the electrons,
and gives the same chiral phase to any triangular
second-neighbor hopping path around a dipole.

® six-fold rotation symmetry is unbroken,

® no net flux through the unit cell



(looks like six points, but
only two “Dirac points” are distinct)




Hilbert-Space picture of the geometry of  (Brillouin zone of an

: isolated 2D band is a simpl
the graphene valence and conduction band ™" £= 22n% > @ SMPE
torus with genus 1)

conduction There is a“Zy” Berry
band phase factor -1
for these adiabatic
paths
Dirac : In k-space, Dirac points
point <—Dirac are singularities, in

point Hilbert space, they are
smooth tubes or
“wormholes” that join
the two bands

valence
band

The two bands joined at the
Dirac points form a
Genus-3 manifold



® The underlying graphene band-structure
with bands touching at two conjugate “Dirac
points” at the corners of the hexagonal
Brillouin zone requires vanishing Berry
curvature 7 '(k) of the Bloch bands in the
Brillouin zone (topologically a 2-torus).

® spatial inversion symmetry implies
FY(k) = F*Y(—k)
® time-reversal symmetry implies

FY(k) = —F"(—k)

® Both symmetries are required for the Dirac
band-touching points to survive




® there are two sites per unit cell, related by
2D inversion (180° rotation) symmetry

A 2 B
2 2
B 6 A
2 2
A 2 B

® breaking this symmetry opens a “boring”
equal-sign mass gap at both Dirac points, and
the system becomes a simple “Boron-nitride”
semiconductor



® |n contrast, breaking time-reversal gives an
“interesting”’ mass term that has opposite
sign at the two Dirac points

ooooooooooooooooo

ooooooooooooooooo

® This “topological” mass term anticommutes
with all other possible mass terms (which
commute with each other) and gives a
quantum Hall effect.



® Breaking either Inversion
or time-reversal allows a
local Berry-curvature at
each point in the Hilbert
space.

® The

Dirac points lose

topological protection and

split

Berry “flux” of close to

flows through these
paths. It must emerge or
enter near the former
Dirac points
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Broken inversion
symmetry, no net Berry
flux flows between

bands

Broken time reversal
symmetry, net Berry
flux 27 flows between

bands. bands have
Chern numbers +1, —1



If both perturbations are present, the Dirac
points have different mass gaps
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FIG. 2. Phase diagram of the spinless electron model with
|t2/t1] < 5. Zero-field quantum Hall effect phases (v=*1,
where o =ve?/h) occur if | M/t2| <3+/3|sing|. This figure
assumes that 7, 1s positive; if it is negative, v changes sign. At
the phase boundaries separating the anomalous and normal
(v=0) semiconductor phases, the low-energy excitations of the
model simulate undoubled massless chiral relativistic fermions.
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® Because of its simplicity, this model has been very
useful in a number of contexts:

® |t provides a simple model of a Berry-phase-driven
quantum anomalous Hall effect when the Fermi
level is in the gap.

® When the Fermi level is in one of the bands, it
provides a simple model for a 2D ungquantized
anomalous Hall effect, where in 2D the Hall
conductance is the total Berry phase for moving a
quasiparticle clockwise around each branch of the
Fermi surface. This result proved very useful for
the more interesting generalization showing that
the 3D anomalous Hall effect was a geometrical

Fermi-surface Berry-curvature property (FDMH,
Phys. Rev.Lett. 93,206602 (2004)




Photonic “Chern insulator bands”

Photons are neutral bosons, not charged
fermions, so they will not exhibit a QHE

but photonic bands with non-vanishing Chern
number can have protected edgemodes if they are
in a bulk photonic gap!

My student Sri Raghu found a photonic
bandstructure based on the graphene model that
explicitly demonstrated this.

Later, a (using a more robust bandstucture
design), protected edge transport of microwaves
was experimentally confirmed at MIT



Analogs of quantum Hall edge states in photonic crystals
Haldane and Raghu, Phys. Rev. Lett.100, 013904 (2008)

® Predicted theoretically that using microwaves go
magnetooptic (time-reversal-breaking) ~ around obstacle!
materials, photonic analogs of electronic
quantum Hall systems could be created
where topologically-protected edge
modes allow light to only travel along
edges in one direction, with no
possibility of backscattering at

b

obstacles!

® Effect was experimentally confirmed ° | N ?:)
recently at MIT (Wang et al., Nature ro o ol
461,775 (8 October 2009).

® Obvious potential for technological e o poe

1 Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field

aP P I icati O n S ! ( O n e —Way I O S S —fre e distribution (E,) at 4.5 GHz in the absence of the scatterer, calculated from

finite-element steady-state analysis (COMSOL Multiphysics). The feed

wavegu id es) (from Wang et. al)



Kane and Mele 2005

® Two conjugate copies of the 1988 spinless
graphene model, one for spin-up, other for

in-down
>P oW Zeeman coupling

opens gap
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one way, spin-down

If the 2D plane is a plane of mirror symmetry, spin-
orbit coupling preserves the two kinds of spin.
Occupied spin-up band has chern number +1,

occupied spin-down band has chern-number -1.



® This looks “trivial”, but Kane and Mele found that
the gapless “helical” edge states were still
there (!) when Rashba spin-orbit coupling that
mixed spin-up and spin-down was added.

They found a new “Z2” topological invariant of 2D
bands with time-reversal symmetry that takes two

values, +| or -1.The invariant derives from
Kramers degeneracy of fermions with time-
reversal symmetry.

® This launched the new “topological insulator”
revolution when an experimental realization was
demonstrated by Molenkamp in a much improved,
physically-realizable model designed by Andrei
Bernevig, Taylor Hughes and Shoucheng Zhang



I'll leave the “modern” Tl story for my co-medallists to
tell, but I'll comment on the things that surprised me the

® The 3D effect, first formally discovered by Joel
Moore (whose undergraduate Senior Thesis |

supervised years ago) and Leon Balents, and
independently by Rahul Roy.

This really become clear after Charlie Kane and his then
student Liang Fu found the beautiful formula that allows

“Topological or not” to be determined by inspection of
inversion-symmetric bulk 3D band structures

and



® The beautiful reformulation of the 3D Tl as
3+1d “axion electrodynamics” by Xiao-Lin
Qi, Taylor Hughes and Shoucheng Zhang:

this parallels the “theta term” of the
| +1d spin chain,based on the second Chern

invariant as opposed to the first because the
spatial dimension increased by 2!




® Finally, recent work by a number of authors
on “flat band” fractional Chern insulators,
including my 1988 honeycomb model has
shown that they support Laughlin-like states
on a lattice, making a start to the fractional

topological insulator story!



The moral of this long story: suggests
three distinct ingredients for success.

® Profound, correct, but perhaps opaque formal
topological results (Invariants, braid group, etc)

® Profound, simple and transparent ““toy models”
that can be explicitly treated (The honeycomb
Chern Insulator, the Kitaev Majorana chain, etc)

® Understanding the real materials needed for
“realistic” (but more complex) experimentally-
achievable systems that can bring “toy model
results” to life in the hands of experimentalist
colleagues.



